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Abstract | In this paper, we give a brief review of pattern classification algorithms based on

discriminant analysis. We then apply these algorithms to classify movement direction based on

multivariate local field potentials recorded from a microelectrode array in the primary motor

cortex of a monkey performing a reaching task. We obtain prediction accuracies between 55%

and 90% using different methods which are significantly above the chance level of 12.5%.

1. Introduction
A significant challenge in applied neuroscience
is to build prosthetic devices (e.g. limbs and
computer interfaces) controlled by neural signals
from the brain1. The ultimate goal is to provide
paralytic patients and amputees with the means to
move and communicate by controlling a prosthetic
device using brain activity. Strong relationships
between the activity of neurons in the brain’s
motor cortex and intended movement kinematics
in patients with tetraplegia or in able-bodied non-
human primates2–12 have allowed scientists and
engineers to get closer and closer to building such
devices. Although there has been steady progress
in developing both hardware and software needed
to directly connect human brains to prosthetic
devices1,13,9,14–17, one of the key remaining issues is
the need of fast and robust exploratory algorithms
for classification of neural signals into discrete
states (e.g. symbols for communication, discrete
directional click and point devices) in real time. For
example, one might want to train and test a discrete
state controller based on few-minute long data
segments and test it immediately in a closed-loop
application (e.g. [13]). State of the art classification
algorithms such as support vector machines are
computational expensive and require a reasonable

amount of parameter tuning18,19. On the other
hand, algorithms based on classic discriminant
analysis remain off-the-shelf tools for exploratory
analyses because of their fast computation and
robustness20.

In this paper, we briefly review various pattern
classification algorithms based on discriminant
analysis. We then illustrate and compare these
algorithms’ performances on classification of
movement direction based on multivariate local
field potentials recorded from a microelectrode
array in the primary motor cortex of a monkey
performing a reaching task.

2. Pattern classification using discriminant
functions

In the previous section, we reduced the problem
of decoding movement direction from LFP data to
a pattern classification problem. In this section,
we briefly describe the theory behind such
classification21.

Given an arbitrary collection of individuals, we
need to classify the individuals into various groups
so that the individuals belonging to the same group
have similar characteristics. The problem that is
addressed with discriminant function analysis is
how well is it possible to separate two or more
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groups of individuals given measurements for these
individuals on several variables. In the general case
there will be m random samples from different
groups of sizes n1,n2,n3, . . . ,nm and values will be
available for p variables X1,X2,X3, . . . ,Xp for each
sample member.

2.1. Discrimination using Mahalanobis distance
The Mahalanobis distance21 is frequently used
to measure the distance of a single multivariate
observation from the center of the population that
the observation comes from. The mean vectors for
the m samples can be regarded as estimates of the
true mean vector for the groups. The Mahalanobis
distance of individuals to group centres can then
be calculated and each individual can be allocated
to the group that is closest to. This may or may
not be the group that the individual actually came
from. The percentage of correct allocations is clearly
an indication of how well groups can be separated
using the available variables.

This procedure is defined as follows. Let

µi = [µ1i,µ2i, . . . ,µpi]
T , 1 ≤ i ≤ m

denote the vector of mean values for the sample
from the ith group. Here T refers to the transpose
operation. Let Ci denote the covariance matrix
for the same sample. The covariance matrix can
differ from group to group. However, for using
Mahalanobis distance, we require all groups to have
the same covariance. To get around this problem, we
define C to be the pooled sample covariance matrix
determined by the following equation:

C =

∑m
i=1(ni −1)Ci∑m

i=1(ni −1)

We use this pooled covariance matrix for
all the groups instead of the individual Ci’s.
We assume that the classes are described by
multidimensional Gaussian probability density
function. The probability density function of the
class i for an observation

x = [x1,x2, . . . ,xp]
T (1)

is assumed to be given by the Gaussian pdf:

gi(x) =
1

(2π)p/2
|C|

−1/2e[−
1
2 (x−µi)

T C−1(x−µi)]

The Mahalanobis distance from an observation
x (equation (1)) to the center of the group i is given
by,

D2
i = (x−µi)

T C−1(x−µi)

=

p∑
r=1

p∑
s=1

(xr −µri)crs(xs −µsi)

where crs is the element in the rth row and sth
column of C−1. Clearly,

gi(x) =
1

(2π)p/2
|C|

−1/2e(−D2
i /2)

The observation x is allocated to the group for
which D2

i has the smallest value. In other words, the
observation x is allocated to that group which gives
the maximum aposteriori probability.

2.2. Discrimination using Gaussian quadratic
norm

Here, we calculate the probability density function
of the class i for the observation x by the following
relation:

gi(x) = −
1

2
ln|Ci|−

1

2
(x−µi)

T C−1
i (x−µi)

In this classifier21, the classes are not assumed to
have the same covariance. The covariance of each
class is denoted by Ci as before. We assign x to the
class j if and only if

gj(x) ≥ gi(x)

for all i = 1,2,3, . . . ,m. As before, we assign x to
that class (j) which gives maximum probability.

2.3. Bhattacharya distance
The data in the original space can be transformed
into a feature space by extracting important
information (also called significant features) from
this data. Therefore, feature selection is an important
consideration in any classification scheme, where
one needs to choose a smaller subset of features
from a complete set of raw measurements, such that
the improved subset generates as good or better
classification performance compared to original
data. This also helps to reduce the dimensionality of
the data set.

The Bhattacharya distance21 is used as a measure
of separability of the prior probability distribution
of two classes from a given set of features (e.g.
channel averaged power at different frequencies). It
provides a bound of classification accuracy by taking
into account the first and second order statistics.
This distance is the sum of two components, one
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primarily based on mean differences and the other
based on covariance differences.

Under the assumption of multivariate normality
(of the pdf ’s of different classes), the Bhattacharya
distance is computed by the equation:

B =
1

8
[µf −µg ]

T
[

6f +6g

2

]−1

[µf −µg ]

+
1

2
ln

(
|
6f +6g

2 |√
|6f ||6g |

)
.

Here µf , µg are mean vectors and 6f , 6g are
covariance matrices of the two features f and g . We
pick those optimal features (e.g. channel averaged
power at some optimal frequency) which maximises
the Bhattacharya distance in the feature space.

3. The partitioning of feature space
To classify a point in feature space, we should be
able to divide the feature space into an exhaustive set
of non overlapping regions; one for each group of
interest so that every point in the space is uniquely
associated with one of the named classes (groups).
The locus of points which separate a pair of groups is
called a ‘decision boundary’21. These are estimated
using training samples.

The case of multi-group classification (m >

2) is intrinsically harder than binary (m = 2)
classification because the classification algorithm has
to construct more number of decision boundaries
for which each group has to be explicitly defined.
For m groups in the feature space, the probability of
correctly classifying a point by chance is 1/m.

The modeling of each group is nothing but the
modeling of the probability density function for
that group in feature space. It must be done in such
a way that different groups are as distinct from one
another as possible. How well a classifier will work
depends on how well the true class density functions
can be determined from the training samples.

In the case of the Gaussian Quadratic norm
classifier, the decision boundary in the feature space
will be a second order hyperspace and its form and
location between the class mean values will depend
on Ci’s. This classifier is a maximum likelihood
classifier.

4. The experiment
We consider an experiment in which a well trained
monkey performs a Sensorimotor cognitive task as
described below. This experiment was performed at
John Donoghue’s laboratory at Brown University,
USA.

The monkey sat on a chair and in front of her,
there was a vertical panel with a center button

and 8 buttons that were radially placed around
the center one. Reaching one of these 8 buttons
corresponded to a movement direction of 0◦, 45◦,
90◦, 135◦, 180◦, 225◦, 270◦ and 315◦. The 0◦

movement corresponded to moving horizontally
to the right. The other directions were marked in
an anticlockwise direction with respect to this 0◦

direction.
The sequence of events in the tasks was as it

follows. First, the center button lit up for a short
time. If the monkey reached the center button in
less than 2 s, a trial began. The monkey had to hold
the button for at least 500 ms, otherwise the trial
was aborted. In any given trial, one of the radial
buttons glowed randomly for 150 ms (this happened
randomly in the time interval [500 ms, 1000 ms]).
The start time of this event is here referred to as
the “precue time”. After this instructed delay, all the
radial buttons glowed at once. This time is called
the “gocue time”. The monkey had to move its arm
in that direction where the single radial button had
lit up initially. If the monkey reached the correct
radial button within 2 s after gocue, the trial was
considered to be successful. On the other hand, if
the monkey did not reach the correct radial button
and held the center button for at least 50 ms, the
target was aborted.

In this manner, 411 trials of successful hand
reaching movements were performed by the monkey.
In each trial, the multichannel Local Field Potentials
(LFP’s) (which can be thought of as embodying the
collective synaptic input of local neuronal clusters22)
were recorded from a 96-microelectrode array17

chronically implanted in the primary motor cortex
of the monkey which is contralateral to the moving
arm. All correct trials were rewarded with juice. Of
the 47 channels of data that were recorded, 43 were
found to be good for further data analysis.

Figure 1 shows the spatial map of the
multichannel electrodes during a recording session.

By considering a single trial multichannel
LFP over a brief time interval of about 250 ms
prior to gocue (i.e. during the instructed delay
period), our goal is to decode the direction of hand
movement based on spatiotemporal correlation
patterns within the LFP signal. We approach this
as a pattern classification problem. First we train
a classifier using a training data set (which is a
subset of the full LFP data). Once this is done,
we assign each individual trial in the remaining
data set (called the testing data set) to one of
the eight possible directions using various pattern
classification algorithms. Moreover, this needs to be
accomplished before the hand movement actually
starts. Since we know the end result for each trial,
we then determine the probability of successful
prediction. In our case, since we have to predict
the direction of movement in one of eight possible
directions, the probability of obtaining the correct
result by chance is 0.125.
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Figure 1: Spatial locations of the 47 electrodes (out of a total of 100
electrodes in the implanted microelectrode array) used in our study.

5. Results
In our approach, to predict the direction of
monkey’s movement target, we employ the Bayesian
classifiers (Mahalanobis distance and Gaussian
quadratic norm as described earlier) with uniform
prior probability distribution. We assume the power
spectrum to be normally distributed in the entire
frequency range. The 8 directions are assumed to be
equally likely.

The entire collection of 411 trials is divided
into two roughly equal sets, namely the training set
and the testing set. The training set is used to train
the classifier by determining the parameters (mean
vector and covariance matrix) for each direction
(group). The testing set is used to evaluate the
performance of the classifier.

5.1. Single frequency feature space approach
To predict the direction of monkey’s target, we
proceed as follows. The classifier used here is
the Mahalanobis distance. By using the multitrial
multichannel Local Field Potential (LFP) recordings
between the time interval [250 ms, 500 ms] during
the instructed delay period from the training set,
we determine the power at a given frequency in the
gamma band [31 Hz, 55 Hz] for each channel, each
trial and each direction using the multitaper method.
The feature used here to obtain the prediction is the
multichannel power at a given frequency fa in the

gamma band. The reason for choosing the gamma
band is that it has been observed23,24 to play an
important role during the working memory period
(i.e. during the time when we wish to predict the
movement direction). Figure 2 shows the power
spectrum of the monkey during 0–500 ms in the
instructed delay period.

By using the multichannel, multitrial power at
this frequency from the training data set, we estimate
the parameters of the classifier for each direction.
We use frequencies in the gamma band since earlier
studies have shown that this frequency range hold
significant promise for movement prediction.

In order to test the performance of the classifier,
we do the actual classification of an arbitrary single
trial data from the testing data set as described
below. Firstly, we choose an analysis window of
150 ms duration that slides along the time axis of
the data (by 2 data points at a time) from 250 ms to
500 ms. This time interval has been chosen such
that it is prior to the actual start of the monkey’s
hand movement. A small moving time window
is used for the following reason. As the data is
non-stationary, we analyze the single trial data by
using highly overlapped time windows of 150 ms
duration. Within each time window, the underlying
stochastic process generating the data is assumed
to be stationary. Hence all the standard techniques
from stochastic processes can be used within each
time window.

For the data in each time slice, by using
the multichannel power at the frequency fa

(computed by multitaper method), we calculate
the Mahalanobis distance for all directions and
determine that direction which gives the minimum
distance. We then predict that the monkey is
about to move its arm in the above direction. This
procedure when repeated for all trials, enables
to calculate the probability of correct prediction
since we know the actual direction in which the
monkey had moved its arm for each trial. This
procedure when repeated for all time windows,
gives the temporal evolution of the probability of
correct prediction for all directions of analysis as
the analysis window slides along the time axis.

This procedure is repeated for each frequency fa

in the gamma band. We pick that frequency feature
f ∗
a for which the predictability is maximum. The

performance of the classifier is shown in Figures 3
and 4 for various directions.

5.2. Principal component analysis of single
frequency

5.2.1. Theory
In the previous method, we used the power in

all the channels at a particular frequency. Since
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Figure 2: Power spectrum in all channels for 45 degree direction during instructed delay period.
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the corresponding electrodes are all closed spaced
(within a distance of approximately 4 mm), the
powers in different channels can be quite similar (i.e.
not independent) and this can lead to over fitting.
To avoid this, principal component analysis can be
used to reduce the number of variables.

The objective of Principal component analysis25

is to take p variables X1,X2,X3, . . . ,Xp and find
combinations of these to produce new variables
Z1,Z2,Z3, . . . ,Zp that are uncorrelated. These new
variables are ordered so that Z1 explains the largest
amount of variation in the data, Z2 explains the
second largest amount of variation and so on. That
is Var(Z1) ≥ Var(Z2) ≥ . . .≥ Var(Zp). The new
variables Zi’s are called principal components. In
performing principal component analysis, there
is a possibility that the variances of most Zi’s will
be so low as to be negligible. In such a case, the
variation in the data set can be adequately described
by the first few Zi variables whose variances are not
negligible. Hence, principal component analysis is
used to reduce the dimensionality of the problem
and to transform interdependent coordinates into
significant and independent ones.

The ith principal component Zi for (1 ≤ i ≤ p)
is given by

Zi = ai1X1 +ai2X2 +···+aipXp .

The Var(Zi) is as large as possible subject to the
constraint that

a2
i1 +a2

i2 +a2
i3 +···+a2

ip = 1.

Also, Zi is uncorrelated with Zi−1,Zi−2, . . .Z2 and
Z1. Without this constraint on the coefficients
aij , we can see that Var(Zi) can be increased by
increasing one of the aij (for a given i).

The determination of the coefficients aij is an
eigen value problem of the sample covariance matrix
C. The variances of the principal components are
the eigen values of the matrix C. Let the eigen values
of C be arranged as l1 ≥ l2 ≥ l3 ≥···≥ lp ≥ 0. Now,
li corresponds to the ith principal component Zi.
The coefficients ai1,ai2, . . . ,aip are the elements of
the corresponding eigen vector (these are scaled so
that

∑p
j=1 a2

ij = 1).

5.2.2. Implementation
By considering the multitrial multichannel

LFP recordings over the time interval of [250 ms,
500 ms], we compute the power in the gamma
frequency band using multitaper method for all
the good channels and for all trials belonging
to the training set. We choose a frequency fa

in the gamma band. Using the multichannel
power at the frequency fa, we transform this
by principal component analysis and pick 5
principal components Zi’s. Each of these principal
components is a linear combination of the power
in different channels at the frequency fa. The first
5 components explain between 80 to 90 percent
of the total variance across the eight directions. By
evaluating these principal components for all trials
belonging to various directions, we determine the
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Figure 3: Time evolution of probability of correct prediction by single frequency feature space approach for various directions. The
horizontal dashed line indicated chance level.

parameters of the classifier for various directions.
Here again, we use Mahalanobis distance as the
classifier.

To test the performance of the classifier on the
testing set, we perform the actual classification
by considering each single trial data belonging to
the testing set. We proceed as follows. From the
single trial multichannel LFP recordings, to get the
temporal evolution of the prediction, we divide
the data using highly overlapped time windows
of 150 ms duration. For the data in each time
slice, the multichannel power at the frequency fa

computed by multitaper method is transformed
to get 5 principal components from which the
Mahalanobis distance is determined for various
directions. The given trial is assigned to that
direction for which the Mahalanobis distance is
minimum. This classification when repeated for all
single trial data for all time slice gives the evolution

of probability of correct prediction of monkey’s
movement direction.

This procedure is repeated for various
frequencies fa in the gamma band, and the optimal
frequency that gives the best predictability is chosen.
The graphs of probability of correct prediction for
various analysis direction are shown in Figures 5
and 6.

5.3. Prediction by Canonical Discriminant
function method

5.3.1. Theory
Next, we consider an alternative method for

pattern classification—the canonical discriminant
function method25. Here, we determine function
Zi’s which are linear combination of the variables
X1,X2,X3, . . . ,Xp that enable us to separate the m
directions (groups) as much as possible. Hence Z
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Figure 4: Time evolution of probability of correct prediction by single frequency feature space approach for various directions. The
horizontal dashed line indicated chance level.

takes the form

Z = a1X1 +a2X2 +a3X3 +···+apXp

Groups can be well separated using Z if the
mean value changes considerably from group to
group,with the values within a group being fairly
constant. The coefficients a1, a2, a3, . . . , ap are
determined so as to maximize a suitable F-ratio for
a one way analysis of variance.

By this approach, one can determine several
linear combinations for separating groups. In
general, the number is s which is given by
min(p,m − 1). These s functions are called the
canonical discriminant functions. The first function

Z1 =

p∑
j=1

a1jXj

gives the maximum possible F-ratio on a one-way
analysis of variance for the variation within and
between groups. If there is more than one function,
then the second one

Z2 =

p∑
j=1

a2jXj

gives the maximum possible F-ratio on a one-way
analysis of variance subject to the condition that
there is no correlation between Z1 and Z2 within
groups. The other functions are defined in the same
way. Thus the ith canonical discriminant function

Zi =

p∑
j=1

aijXj

is the linear combination for which the F-ratio on
an analysis of variance is maximised, subject to
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Figure 5: Time evolution of probability of correct prediction by principal component analysis approach for various directions. The
horizontal dashed line indicated chance level.

Zi being uncorrelated with Z1,Z2,Z3, . . . and Zi−1

within groups. Thus the functions Z1,Z2,Z3,. . .,Zs

are chosen in such a way that Z1 reflects group
difference as much as possible; Z2 captures as much
as possible of the group differences not displayed by
Z1; Z3 captures as much as possible of the group
differences not displayed by Z1 and Z2; and so on.

5.3.2. Implementation
Given the frequency fa in the gamma band, by

using the multichannel power at this frequency,
we determine the coefficients of the canonical
discriminant function. Since, Z is a vector CDF, we
use Mahalanobis distance to classify the single trial
LFP data from this. By determining the parameters
for all directions from the training set, we do
the actual classification for a single trial LFP data
from the testing set. By considering the data in
various time slices of 150 ms duration, we get the

evolution of the probability of the correct prediction.
This procedure is repeated for each frequency
fa in the gamma band and we pick the optimal
frequency feature which gives best predicability
of the monkey’s movement target. It was found
that this procedure does not give good predictions.
Hence we have not displayed the figures.

5.4. Histogram approach
This method is also a single frequency feature space
approach. Here we do not use any classifier. Instead
we determine the prior probability density function
for each directions as follows. We choose a frequency
fa in the gamma band. By using the multitrial
multichannel power at this frequency, we average
the power across all channels for each trial in the
training set. By considering the collection of trials in
a given direction, we get an estimate of the pdf ’s for
each direction by using the channel averaged power
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Figure 6: Time evolution of probability of correct prediction by principal component analysis approach for various directions. The
horizontal dashed line indicated chance level.

(at frequency fa). Hence, we have an estimate of the
pdf ’s for each direction (group) from the training
set.

Given a single trial LFP recording, we choose
the multichannel recording in a given time window
(slice). By evaluating the channel averaged power at
the frequency fa, we assign this trial to that direction
that gives the maximum aposterior probability. In
the same manner, the direction allocation of this
data is repeated for all trials in the testing set.

Repeating this procedure for all time windows
enables us to get the temporal evolution of the
probability of correct prediction. This procedure is
repeated for all frequency in the gamma band and
the frequency that gives best predictability is chosen.
The results obtained are shown in the Figures 7 and
8.

5.5. General remarks on subsequent methods
We now describe other methods that we used to
classify the testing set data and obtain predictions
of movement directions. However, none of these
methods gave results better than the first few
methods. Hence only a brief description of the
method will be given for the sake of completeness.
No figures will be included.

The following key steps are common in each
of the subsequent methods for decoding monkey’s
movement direction:

(1) By using the multitrial multichannel LFP
recordings between the time intervals [250 ms,
500 ms] during instructed delay, we compute the
power spectrum by multitaper method for all
channels and trials. The power in the gamma
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Figure 7: Time evolution of probability of correct prediction for various directions by histogram approach. The horizontal dashed line
indicated chance level.

frequency band [31 Hz, 55 Hz] is used during
the classification of single trial data in various
directions.

(2) While doing actual classification on training
set, we divide the single trial multichannel data by
using highly overlapped time windows of 150 ms
duration as the signal is non-stationary. We classify
the trial using some algorithm in each time slice. As
we slide the time window across the data, we obtain
the temporal evolution of the probability of correct
prediction for each of the methods.

5.6. Two frequency feature space approach
In this method, to choose a set of optimal
frequencies, (similar to the single frequency f ∗

a in
the previous methods) we make use of Bhattacharya
distance. First, the power in the gamma band is
averaged over channels for all trials and frequencies.
We want to pick a pair of frequencies (f ∗

1 , f ∗
2 )

so that the channel averaged power at the above
optimal pair of frequencies separates the pdf ’s of
each direction the most. To do this, we evaluate
the Bhattacharya distance using channel averaged
power at all possible pairs of frequencies (f1, f2). The

optimal pair of frequencies (f ∗
1 , f ∗

2 ) corresponds
to those frequencies for which the Bhattacharya
distance is maximum. The classifier used here is
the Gaussian quadratic norm. The parameters of
the classifier are evaluated using channel averaged
power at this pair of optimal frequencies for each
direction. The time evolution of the probability of
correct prediction is obtained in the usual manner.

5.7. Four channel feature space approach
The best feature subset is obtained as follows. We
sum the power over frequencies in the gamma band
for each channel and trial from the training set. Here,
the frequency summed power of the ith channel
(1 ≤ i ≤ 43) is considered as the ith feature. We
form all possible 4-tuple channel combinations of
these frequency summed powers. For each such 4-
tuple channel combination, we obtain the pairwise
separability using Bhattacharya distance between all
possible pairs of directions.

We consider that direction pair for which the
average Bhattacharya distance across all channel
combinations is the least. Then for this optimal
direction pair, we choose that channel combination
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Figure 8: Time evolution of probability of correct prediction for various directions by histogram approach. The horizontal dashed line
indicated chance level.

which gives the largest distance. Here, we are trying
to maximize the successful classification for that pair
of direction which are hardest to classify. By using
the frequency summed power of this optimal 4-
channel combination, we determine the parameters
of the Gaussian quadratic norm for each direction.
The time evolution of the probability of correct
prediction is obtained in the usual manner.

5.8. 3 Channel 1 frequency feature space approach
Here, the power at a given frequency f1 of the ith
channel is considered to be the ith feature to be used.
We form a 3-tuple channel combination of power at
the frequency f1 and obtain pairwise separability
using Bhattacharya distance between all pairs of
direction. This pairwise separability distance is
averaged across the pair of directions for all 3-
tuple channel power (at frequency f1). We pick
that 3-tuple channel combination of power at the
frequency (f ∗

1 ) for which the across direction average
distance is maximum. Using this optimal 3-tuple
channel combination of power at the frequency
f ∗
1 , we determine the parameters of the Gaussian

quadratic norm for all directions using the training
set.

5.9. 3-channel 2-frequency feature space approach
Here also, the ith channel power at a given frequency
is considered to be the ith feature to be used. We
form a 3-tuple channel combination of power at
a pair of frequencies (f1, f2) and obtain pairwise
separability using Bhattacharya distance between
all pairs of directions. This pairwise separability
distance is averaged across the pair of directions
for all possible 3-tuple combinations (of power
at al pairs of frequencies). We pick the optimal 3-
tuple channel combination of power at the pairs of
frequencies (f ∗

1 , f ∗
2 ) for which the across direction

average distance is a maximum. Using this 3-
tuple channel combination of power at the pair
of frequencies (f ∗

1 , f ∗
2 ), the parameters of various

directions are determined. We again make use of the
Gaussian quadratic norm as the classifier. The time
evolution of the probability of correct prediction is
obtained in the usual manner.

6. Reaction times
The reaction time is defined as the time difference
between the go cue and the start of hand movement.
It represents the total time taken by the visual
signal to reach the brain and for the appropriate
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Figure 9: Plot of mean reaction times for the eight directions.
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command to reach the hand. We wish to correlate
this time with the preferred and anti-preferred
directions for monkey’s movement as obtained
through LFP’s in the gamma band. The preferred
(anti-preferred) direction is the direction for which
the relative power in the gamma band is the
maximum (minimum). From the data, the preferred
(anti-preferred) direction is found to be 45◦ (270◦).
The plot of the mean reaction times for the eight
directions is shown in figure 9. We see that 45◦

direction has the minimum mean reaction time.
This corresponds to the preferred direction for the
monkey. On the other hand, 225◦/270◦ directions
have the maximum mean reaction time. This
corresponds to the anti-preferred direction for the
monkey. Thus the intuitive expectation that the
preferred (anti-preferred) direction should have the
minimum (maximum) reaction time is borne out
by the data.

7. Conclusions
In this paper, we considered the problem of
predicting the direction of a monkey’s hand
movement using a single trial of multichannel LFP’s
recorded from its motor cortex. We approached
this problem as a pattern classification problem and
studied fast and robust algorithms for decoding
the movement direction based on discriminant
analysis. We observed that the histogram method
was able to decode the direction better than other
methods for most directions. For directions where it

performed well, the percentage of correct prediction
ranged between 55% and 90%. However, it did
poorly for 90◦ and 180◦ directions and not so well
for 45◦ direction. For these directions, the PCA
method performed better. For these directions, the
percentage of correct predictions by PCA ranged
from 50% to 65%. In all cases, we were able to obtain
predictions significantly above the chance level
(which gives the probability of correct prediction
to be only 0.125). Further, we observe a distinct
time evolution pattern of the probability for correct
prediction in almost all the cases. The probability
becomes maximum at some time prior to the start
of the actual hand movement as expected in the case
of recordings from the motor cortex. We hope to
study in the future the application and performance
of these algorithms in the context of human closed-
loop neuro-motor prosthetic devices.
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